67 research outputs found

    Discovering Reliable Dependencies from Data: Hardness and Improved Algorithms

    Get PDF
    The reliable fraction of information is an attractive score for quantifying (functional) dependencies in high-dimensional data. In this paper, we systematically explore the algorithmic implications of using this measure for optimization. We show that the problem is NP-hard, which justifies the usage of worst-case exponential-time as well as heuristic search methods. We then substantially improve the practical performance for both optimization styles by deriving a novel admissible bounding function that has an unbounded potential for additional pruning over the previously proposed one. Finally, we empirically investigate the approximation ratio of the greedy algorithm and show that it produces highly competitive results in a fraction of time needed for complete branch-and-bound style search.Comment: Accepted to Proceedings of the IEEE International Conference on Data Mining (ICDM'18

    The Efficient Discovery of Interesting Closed Pattern Collections

    Get PDF
    Enumerating closed sets that are frequent in a given database is a fundamental data mining technique that is used, e.g., in the context of market basket analysis, fraud detection, or Web personalization. There are two complementing reasons for the importance of closed sets---one semantical and one algorithmic: closed sets provide a condensed basis for non-redundant collections of interesting local patterns, and they can be enumerated efficiently. For many databases, however, even the closed set collection can be way too large for further usage and correspondingly its computation time can be infeasibly long. In such cases, it is inevitable to focus on smaller collections of closed sets, and it is essential that these collections retain both: controlled semantics reflecting some notion of interestingness as well as efficient enumerability. This thesis discusses three different approaches to achieve this: constraint-based closed set extraction, pruning by quantifying the degree or strength of closedness, and controlled random generation of closed sets instead of exhaustive enumeration. For the original closed set family, efficient enumerability results from the fact that there is an inducing efficiently computable closure operator and that its fixpoints can be enumerated by an amortized polynomial number of closure computations. Perhaps surprisingly, it turns out that this connection does not generally hold for other constraint combinations, as the restricted domains induced by additional constraints can cause two things to happen: the fixpoints of the closure operator cannot be enumerated efficiently or an inducing closure operator does not even exist. This thesis gives, for the first time, a formal axiomatic characterization of constraint classes that allow to efficiently enumerate fixpoints of arbitrary closure operators as well as of constraint classes that guarantee the existence of a closure operator inducing the closed sets. As a complementary approach, the thesis generalizes the notion of closedness by quantifying its strength, i.e., the difference in supporting database records between a closed set and all its supersets. This gives rise to a measure of interestingness that is able to select long and thus particularly informative closed sets that are robust against noise and dynamic changes. Moreover, this measure is algorithmically sound because all closed sets with a minimum strength again form a closure system that can be enumerated efficiently and that directly ties into the results on constraint-based closed sets. In fact both approaches can easily be combined. In some applications, however, the resulting set of constrained closed sets is still intractably large or it is too difficult to find meaningful hard constraints at all (including values for their parameters). Therefore, the last part of this thesis presents an alternative algorithmic paradigm to the extraction of closed sets: instead of exhaustively listing a potentially exponential number of sets, randomly generate exactly the desired amount of them. By using the Markov chain Monte Carlo method, this generation can be performed according to any desired probability distribution that favors interesting patterns. This novel randomized approach complements traditional enumeration techniques (including those mentioned above): On the one hand, it is only applicable in scenarios that do not require deterministic guarantees for the output such as exploratory data analysis or global model construction. On the other hand, random closed set generation provides complete control over the number as well as the distribution of the produced sets.Das AufzĂ€hlen abgeschlossener Mengen (closed sets), die hĂ€ufig in einer gegebenen Datenbank vorkommen, ist eine algorithmische Grundaufgabe im Data Mining, die z.B. in Warenkorbanalyse, Betrugserkennung oder Web-Personalisierung auftritt. Die Wichtigkeit abgeschlossener Mengen ist semantisch als auch algorithmisch begrĂŒndet: Sie bilden eine nicht-redundante Basis zur Erzeugung von lokalen Mustern und können gleichzeitig effizient aufgezĂ€hlt werden. Allerdings kann die Anzahl aller abgeschlossenen Mengen, und damit ihre Auflistungszeit, das Maß des effektiv handhabbaren oft deutlich ĂŒbersteigen. In diesem Fall ist es unvermeidlich, kleinere Ausgabefamilien zu betrachten, und es ist essenziell, dass dabei beide o.g. Eigenschaften erhalten bleiben: eine kontrollierte Semantik im Sinne eines passenden Interessantheitsbegriffes sowie effiziente AufzĂ€hlbarkeit. Diese Arbeit stellt dazu drei AnsĂ€tze vor: das EinfĂŒhren zusĂ€tzlicher Constraints, die Quantifizierung der Abgeschlossenheit und die kontrollierte zufĂ€llige Erzeugung einzelner Mengen anstelle von vollstĂ€ndiger AufzĂ€hlung. Die effiziente AufzĂ€hlbarkeit der ursprĂŒnglichen Familie abgeschlossener Mengen rĂŒhrt daher, dass sie durch einen effizient berechenbaren Abschlussoperator erzeugt wird und dass desweiteren dessen Fixpunkte durch eine amortisiert polynomiell beschrĂ€nkte Anzahl von Abschlussberechnungen aufgezĂ€hlt werden können. Wie sich herausstellt ist dieser Zusammenhang im Allgemeinen nicht mehr gegeben, wenn die FunktionsdomĂ€ne durch Constraints einschrĂ€nkt wird, d.h., dass die effiziente AufzĂ€hlung der Fixpunkte nicht mehr möglich ist oder ein erzeugender Abschlussoperator unter UmstĂ€nden gar nicht existiert. Diese Arbeit gibt erstmalig eine axiomatische Charakterisierung von Constraint-Klassen, die die effiziente FixpunktaufzĂ€hlung von beliebigen Abschlussoperatoren erlauben, sowie von Constraint-Klassen, die die Existenz eines erzeugenden Abschlussoperators garantieren. Als ergĂ€nzenden Ansatz stellt die Dissertation eine Generalisierung bzw. Quantifizierung des Abgeschlossenheitsbegriffs vor, der auf der Differenz zwischen den Datenbankvorkommen einer Menge zu den Vorkommen all seiner Obermengen basiert. Mengen, die bezĂŒglich dieses Begriffes stark abgeschlossen sind, weisen eine bestimmte Robustheit gegen VerĂ€nderungen der Eingabedaten auf. Desweiteren wird die gewĂŒnschte effiziente AufzĂ€hlbarkeit wiederum durch die Existenz eines effizient berechenbaren erzeugenden Abschlussoperators sichergestellt. ZusĂ€tzlich zu dieser algorithmischen Parallele zum Constraint-basierten Vorgehen, können beide AnsĂ€tze auch inhaltlich kombiniert werden. In manchen Anwendungen ist die Familie der abgeschlossenen Mengen, zu denen die beiden oben genannten AnsĂ€tze fĂŒhren, allerdings immer noch zu groß bzw. ist es nicht möglich, sinnvolle harte Constraints und zugehörige Parameterwerte zu finden. Daher diskutiert diese Arbeit schließlich noch ein völlig anderes Paradigma zur Erzeugung abgeschlossener Mengen als vollstĂ€ndige Auflistung, nĂ€mlich die randomisierte Generierung einer Anzahl von Mengen, die exakt den gewĂŒnschten Vorgaben entspricht. Durch den Einsatz der Markov-Ketten-Monte-Carlo-Methode ist es möglich die Verteilung dieser Zufallserzeugung so zu steuern, dass das Ziehen interessanter Mengen begĂŒnstigt wird. Dieser neue Ansatz bildet eine sinnvolle ErgĂ€nzung zu herkömmlichen Techniken (einschließlich der oben genannten): Er ist zwar nur anwendbar, wenn keine deterministischen Garantien erforderlich sind, erlaubt aber andererseits eine vollstĂ€ndige Kontrolle ĂŒber Anzahl und Verteilung der produzierten Mengen

    Mining Interesting Patterns in Multi-Relational Data

    Get PDF

    Effective parallelisation for machine learning

    Get PDF
    We present a novel parallelisation scheme that simplifies the adaptation of learning algorithms to growing amounts of data as well as growing needs for accurate and confident predictions in critical applications. In contrast to other parallelisation techniques, it can be applied to a broad class of learning algorithms without further mathematical derivations and without writing dedicated code, while at the same time maintaining theoretical performance guarantees. Moreover, our parallelisation scheme is able to reduce the runtime of many learning algorithms to polylogarithmic time on quasi-polynomially many processing units. This is a significant step towards a general answer to an open question [21] on efficient parallelisation of machine learning algorithms in the sense of Nick’s Class (NC). The cost of this parallelisation is in the form of a larger sample complexity. Our empirical study confirms the potential of our parallelisation scheme with fixed numbers of processors and instances in realistic application scenarios

    Bayes beats Cross Validation: Efficient and Accurate Ridge Regression via Expectation Maximization

    Full text link
    We present a novel method for tuning the regularization hyper-parameter, λ\lambda, of a ridge regression that is faster to compute than leave-one-out cross-validation (LOOCV) while yielding estimates of the regression parameters of equal, or particularly in the setting of sparse covariates, superior quality to those obtained by minimising the LOOCV risk. The LOOCV risk can suffer from multiple and bad local minima for finite nn and thus requires the specification of a set of candidate λ\lambda, which can fail to provide good solutions. In contrast, we show that the proposed method is guaranteed to find a unique optimal solution for large enough nn, under relatively mild conditions, without requiring the specification of any difficult to determine hyper-parameters. This is based on a Bayesian formulation of ridge regression that we prove to have a unimodal posterior for large enough nn, allowing for both the optimal λ\lambda and the regression coefficients to be jointly learned within an iterative expectation maximization (EM) procedure. Importantly, we show that by utilizing an appropriate preprocessing step, a single iteration of the main EM loop can be implemented in O(min⁥(n,p))O(\min(n, p)) operations, for input data with nn rows and pp columns. In contrast, evaluating a single value of λ\lambda using fast LOOCV costs O(nmin⁥(n,p))O(n \min(n, p)) operations when using the same preprocessing. This advantage amounts to an asymptotic improvement of a factor of ll for ll candidate values for λ\lambda (in the regime q,p∈O(n)q, p \in O(\sqrt{n}) where qq is the number of regression targets)

    Discovering Reliable Dependencies from Data: Hardness and Improved Algorithms (Extended Abstract)

    Get PDF
    Finding (functional) dependencies between attributes in databases is a well-known problem with applications in knowledge discovery, feature selection, and database management. While the recently introduced reliable fraction of information measure allows to soundly quantify dependence in a way that avoids overfitting when optimizing over high-dimensional spaces, the algorithmic implications of using this score have not yet been systematically explored. This includes the computational complexity of the resulting optimization problem. To this end, this paper provides the following contributions: We show that the problem of maximizing the reliable fraction of information is NP-hard, which justifies the usage of worst-case exponential-time as well as heuristic search methods that do not guarantee optimal solutions. We then greatly improve the practical performance for both of these optimization styles by deriving a novel admissible bounding function, which has an unbounded potential for additional pruning over the previously proposed one. Finally, we empirically investigate for the first time the approximation ratio of the greedy algorithm and show that in fact it produces highly competitive results in a fraction of time needed for complete branch-and-bound style search. All findings are evaluated on a wide range of real-world datasets that are publicly available along with the implementation of the algorithmic contributions. Our results suggest that in scenarios where no hard optimality guarantees are required, greedy optimization is a good alternative to branch-and-bound for dependency discovery. Also, the definition of the tighter bounding function is potentially more generally applicable than just to the reliable fraction of information and might be transferrable to other dependency measures
    • 

    corecore